Teoria Quântica (Blog N. 548 do Painel do Coronel Paim) - Parceria: Jornal O Porta-Voz
sexta-feira, 6 de julho de 2012
Londres, 6 jul (EFE).- Meio século após postular sua teoria sobre a existência de uma 'partícula de Deus', que teria permitido a formação do Universo e de tudo que existe, seu autor, o físico inglês Peter Higgs, se disse, nesta sexta-feira, orgulhoso em ter razão.
'Foi uma longa espera, mas poderia ter sido inclusive maior e eu não estaria aqui para vê-la. Às vezes é muito bom ter razão', comentou o professor emérito da Universidade escocesa de Edimburgo, de 83 anos, durante uma entrevista coletiva realizada hoje na instituição.
Higgs falou pela primeira vez no Reino Unido, seu país natal, sobre o descobrimento de uma nova partícula que já é chamada 'bóson de Higgs', por parte dos cientistas do Centro Europeu de Física de Partículas (CERN).
Segundo a teoria do pesquisador inglês, o bóson teria dado massa a todas as demais partículas e teria permitido a formação do Universo e de tudo que existe.
'A princípio eu não tinha ideia se o descobrimento aconteceria durante minha vida, porque em um primeiro momento sabíamos muito pouco sobre ela ou sobre quanta energia a máquina precisaria para detectá-la', explicou Higgs.
A descoberta, considerada por muitos o avanço científico mais importante das últimas décadas, exigirá meio século de pesquisas e bilhões de dólares em diferentes experimentos, e abrirá muitas portas no campo da física.
'Foram muitos anos de desenvolvimento da tecnologia e do desenho de uma máquina capaz de produzir níveis cada vez maiores de energia, e o Grande Colisor de Hádrons (LHC, em sua sigla em inglês) é a única com a potência e intensidade necessárias', acrescentou o físico, nascido na cidade inglesa de Newcastle.
Se o Grande Colisor de Hádrons tivesse descartado a existência do bóson, os físicos teriam que repensar do início o modelo padrão da física de partículas.
A existência da partícula é 'tão crucial para entender como funciona o resto da teoria que aceitar que não existisse seria muito duro para mim', confessou Higgs.
Em dezembro de 2011, os cientistas do CERN anunciaram que haviam detectado os primeiros sinais da partícula, mas o processo para provar sua existência e conhecer suas propriedades exigiu mais tempo.
'Ainda há muito a fazer. À primeira vista parece que (os cientistas do CERN) fizeram uma descoberta, mas ainda não sabem muito sobre ela', ressaltou o físico inglês, que considera que ainda serão necessárias muitas análises e medidas para estabelecer se se trata do bóson ou se constitui uma parte de uma estrutura muito mais elaborada. EFE
Copyright Efe - Todos os direitos de reprodução e representação são reservados para a Agência Efe
Teórico que previu 'partícula de Deus' diz que 'é muito agradável ter razão' (Postado por Lucas Pinheiro)
O cientista britânico Peter Higgs, que defende há quase 50 anos a existência da "partícula de Deus, o que possivelmente acaba de ser descoberto, falou à imprensa nesta sexta-feira (6).
"É muito agradável ter razão de vez em quando (...) foi uma longa espera", admitiu o físico durante a coletiva.
Higgs concedeu uma coletiva de imprensa na Universidade de Edimburgo, na Escócia, dois dias depois que a Organização Europeia para a Pesquisa Nuclear (Cern) anunciou na quarta (4), em Genebra, na Suíça, a descoberta de uma nova partícula que pode ser o tão procurado bóson de Higgs, considerado a chave para entender a estrutura fundamental da matéria no Universo.
Essa a partícula seria a que atribui massa a todas as demais, segundo a teoria conhecida como "modelo padrão".
Conhecido por sua modéstia, o professor aposentado de 83 anos deu pouca importância aos comentários de cientistas famosos de que seria o favorito para vencer o Prêmio Nobel. "Não sei, não tenho amigos no Comitê Nobel", comentou.
Indagado sobre o que vai fazer no futuro, Higgs disse que quer simplesmente continuar com sua vida de aposentado. "O único problema, creio, é que terei de escapar da imprensa", brincou.
Em 1964, Peter Higgs postulou a existência de uma partícula subatômica, que os físicos do Cern afirmam ter, talvez, encontrado depois de uma longa busca.
Quando teve a intuição de um "campo" que se assemelha a uma espécie de cola, onde as partículas ficariam mais ou menos presas, Higgs disse ao antigo colega Alan Walker: "Ah, que merda, eu sei como fazer!"
O físico publicou um artigo sobre sua teoria, que acabou se tornando o carro-chefe de uma escola científica para a qual vários físicos têm contribuído ao longo dos anos. Tímido e sossegado, Higgs leva uma vida pacata em Edimburgo, onde deu aulas por muitos anos.
A nova partícula que pode ser o bóson de Higgs foi descoberta pelos cientistas, mas ainda são necessárias verificações para confirmar se ela é ou não a "partícula de Deus", segundo anunciou o Cern.
quinta-feira, 5 de julho de 2012
Porque o bóson de Higgs dá sentido ao universo [partícula de Deus]
ACOMPANHE NOSSOS ARTIGOS
Há anos, pesquisadores trabalhando no Grande Colisor de Hádrons (LHC, na sigla em inglês), o maior acelerador de partículas que existe, procuram o bóson, partícula que foi proposta pela primeira vez por Peter Higgs em 1964, 48 anos atrás.
Agora, duas equipes separadas do LHC – ATLAS e CMS – chegaram a resultados parecidos que estão em conformidade com as previsões teóricas sobre as partículas subatômicas do Modelo Padrão da Física, com a inclusão do bóson de Higgs. Isso indica que a partícula de fato existe.
O bóson teria massa de 125.3 GeV, e os resultados têm o nível de certeza de 4,9 sigma (o ideal é 5 sigma, nível necessário para reivindicar uma descoberta, pois significa que há menos de uma chance em um milhão dos dados serem um acaso estatístico).
“Foi anunciada a descoberta de um bóson que pode ser o bóson previsto por Higgs há quase 50 anos. A beleza da descoberta vem não apenas da notável previsão teórica, baseada em alguns conceitos bastante simples de simetria, mas do avanço tecnológico que foi preciso fazer para comprovar a sua existência”, comenta a Prof. Dr. Carola Dobrigkeit Chinellato, do Grupo de Física Teórica (GFT), da Universidade Estadual de Campinas (UNICAMP).
Tal êxito só foi possível com um enorme esforço e trabalho conjunto de milhares de pesquisadores, físicos, engenheiros e técnicos. “Acho que é mesmo um momento histórico”, diz.
Apesar de muita gente achar que o bóson de Higgs é um caso certo, ainda é preciso ter cautela. Os cientistas estão tratando a descoberta como “muito provável”, e pediram tempo para analisar as informações.
“Esta cautela é inteiramente justificável. Embora seja relativamente robusto, níveis de certeza maiores do que 4,9 já vieram a ser modificados pelos próprios dados experimentais. É preciso cuidado”, explica o Prof. Dr. Marcelo M. Guzzo, do Instituto de Física Gleb Wataghin, também da UNICAMP.
A “descoberta” e o Modelo Padrão da Física
O bóson de Higgs é a partícula pela qual supostamente tudo no universo obtém sua massa, inclusive nós, seres humanos.
Sendo assim, a partícula era vista como crucial para que os físicos pudessem dar sentido ao universo. Só que ela nunca tinha sido observada por experimentos.
Por conta de sua importância nos blocos de construção básicos do universo, o bóson recebeu o apelido de “partícula de Deus”, apelido que Guzzo não simpatiza. “Não gosto do nome ‘Partícula de Deus’, apenas se for pensado como uma espécie de brincadeira. Supondo que tenhamos, de fato, descoberto o Higgs, temos em mãos um quebra-cabeça muito mais completo rumo a uma compreensão das partículas elementares e suas propriedades. Isto é muito bom. Mas outras peças que são igualmente importantes neste quebra-cabeça nunca foram chamadas de ‘Partículas de Deus’”, argumenta.
O quebra-cabeça maior seria, por assim dizer, o Modelo Padrão da Física, uma espécie de “livro de instruções” que descreve como as partículas e as forças interagem no universo. Sem a existência do bóson de Higgs, ou seja, de uma partícula que desse massa a todas as outras, todo esse modelo poderia ir por água abaixo.
Sendo assim, uma das grandes consequências da descoberta é o fortalecimento desta teoria em detrimento de teorias alternativas. “Podemos afirmar que nada muda no Modelo Padrão das Partículas Elementares. Pelo contrário. O bóson de Higgs fazia parte do Modelo Padrão que sai muito fortalecido por esta descoberta”, diz Guzzo.
Agora, qualquer outro modelo alternativo ao Modelo Padrão terá que incorporar o Higgs, que passa a ter status de “evidenciado experimentalmente”.
E o bóson de Higgs também ajuda a explicar outras teorias, como a simetria de gauge. “Agora entendemos como a simetria de gauge, um dos pilares da construção do Modelo Padrão e que gera previsões estranhas como, por exemplo, que os bósons intermediários responsáveis pela interação fraca não têm massa, pode incorporar as massas destas partículas que foram encontradas experimentalmente já no início da década de 1970. Isto se dá através do Mecanismo de Higgs”, explica o professor.
O badalado bóson de Higgs, então, foi encontrado (provavelmente). Mas o grande vencedor parece ser o Modelo Padrão da Física.
“O conjunto começa a ficar muito interessante. Bonito mesmo! A ponto que eu gostaria de ver o Modelo Padrão ensinado nas escolas, como um conhecimento popular. É a consagração do Modelo Atomista que há milênios ronda o conhecimento humano”, opina Guzzo.
“Já há muitos anos nós aprendemos sobre a previsão da existência do bóson de Higgs, e ensinamos sobre ele para os nossos alunos. O anúncio dos resultados dos experimentos ATLAS e CMS é motivo de alegria para os físicos, e ainda mais para os físicos que trabalham na área de partículas elementares. Sentimos uma satisfação parecida com a de alguém que está montando um quebra-cabeça enorme e consegue achar a pecinha que estava faltando para completar o quadro”, comemora a professora Carola.
quarta-feira, 4 de julho de 2012
Cientistas descobrem partícula subatômica inédita (Postado por Lucas Pinheiro)
Cientistas anunciaram nesta quarta-feira (4) a observação de uma partícula subatômica inédita até então. Eles veem fortes indícios de que se trate do “bóson de Higgs”, a “partícula de Deus”, única partícula prevista pela teoria vigente da física que ainda não tinha sido detectada em laboratórios, e que vinha sendo perseguida ao longo das últimas décadas.
Pela teoria, o bóson de Higgs teria dado origem à massa de todas as outras partículas. Se sua existência for confirmada, portanto, este é um passo importante da ciência na compreensão da origem de todos os objetos.
“Eu não tenho muita dúvida de que, na física de partículas, é o evento mais importante dos últimos 30 anos”, afirmou Sérgio Novaes, pesquisador da Universidade Estadual de São Paulo (Unesp), que faz parte da colaboração CMS. "Eu acho que é um momento histórico que a gente está vivendo", completou.
Apesar do grande impacto na física teórica, a descoberta ainda não representa um avanço direcionado a nenhum campo específico da tecnologia.
A nova partícula tem características “consistentes” com o bóson de Higgs, mas os físicos ainda não afirmam com certeza que se trate da “partícula de Deus”. Para isso, eles vão coletar novos dados para observar se a partícula se comporta com as características esperadas do bóson de Higgs.
O “bóson de Higgs” ganhou o apelido de “partícula de Deus” em 1993, depois que o físico Leon Lederman, ganhador do Nobel de 1988, publicou o livro “The God Particle” (literalmente “a partícula de Deus”, em inglês), voltado a explicar toda a teoria em volta do bóson de Higgs para o público leigo. Ainda não há edição desse livro em português.
O anúncio foi feito em Genebra, na Suíça, sede do Centro Europeu de Pesquisas Nucleares (Cern, na sigla em francês). As conclusões foram baseadas em dados obtidos no Grande Colisor de Hádrons (LHC, na sigla em inglês), acelerador de partículas construído pelo Cern debaixo da terra na fronteira entre a França e a Suíça, considerado a máquina mais poderosa do mundo.
A descoberta foi confirmada por especialistas do CMS e do Atlas, dois grupos de pesquisa independentes que fazem uso do LHC. Apesar de usarem o mesmo acelerador de partículas, as duas colaborações científicas trabalham com detectores diferentes e seus resultados são paralelos.
Os cientistas medem a massa das partículas como se fosse energia. Isso porque toda massa tem uma equivalência em energia. Se você calcula uma, tem o valor das duas. A unidade de medida usada é o gigaelétron-volt, ou "GeV".
No anúncio, o CMS disse que observou um “novo bóson com a massa de 125,3 GeV” – com margem de erro de 0,6 GeV para mais ou para menos – “em 4,9 sigmas de significância”. Esses “sigmas” medem a probabilidade dos resultados obtidos. O valor de 4,9 sigmas representa uma chance menor que um em 1 milhão de que os resultados sejam mera coincidência. Por isso, os cientistas consideram esse número como uma confirmação da descoberta.
Paralelamente, o grupo Atlas afirmou que “exclui a não-existência de uma partícula com a massa de 126,5 GeV, com a probabilidade de 5 sigmas”.
Em 2011, pesquisadores dos dois grupos de pesquisa do Cern já haviam “encurralado” o bóson de Higgs, quando identificaram a faixa em que encontrariam a partícula – a massa estaria entre 115 GeV e 130 GeV.
Na última segunda, pesquisadores norte-americanos também tinham encontrado “forte evidência” da existência da partícula, em experiências com um acelerador próprio, o Tevatron.
Decaimento
Um dos motivos pelos quais é tão difícil detectar o bóson de Higgs é a sua instabilidade. Essa partícula dura muito pouco tempo e rapidamente se transforma – decai, no jargão científico – em outras. Para encontrar a nova partícula anunciada nesta quarta, eles estudaram o resultado destes decaimentos.
Tanto o CMS quanto Atlas concentraram seus esforços em duas partículas específicas: os fótons, que é como a luz se manifesta, e os bósons Z, que medeiam a chamada força fraca. O resultado foi suficiente para identificar a existência de uma partícula inédita, mas não para caracterizá-la em detalhes.
Para confirmar se o bóson descoberto é mesmo a “partícula de Deus”, será necessário estudar a fundo os decaimentos. O Modelo Padrão – conjunto de teorias mais aceito para explicar as interações da natureza e as partículas fundamentais que constituem a matéria – prevê o decaimento do bóson de Higgs em diferentes partículas, cada uma em determinada quantidade.
O próximo passo dos cientistas é testar os vários decaimentos decorrentes dessa partícula. Se os resultados continuarem sendo coerentes com o Modelo Padrão, será confirmado que ela é mesmo o bóson de Higgs.
Caso haja divergências, pode ser que explicações teóricas alternativas sejam adotadas. Já existe uma, chamada de supersimetria, que faz adendos ao Modelo Padrão e prevê a existência de vários bósons de Higgs com pequenas divergências entre si. Enquanto estas experiências não mostrarem resultados, é impossível afirmar qual dos modelos se adéqua melhor à natureza.
segunda-feira, 2 de julho de 2012
Físicos afirmam ter encontrado fortes indícios da existência da 'partícula de Deus'
Bóson de Higgs pode ter a existência confirmada com a divulgação de novos dados nesta quarta-feira

O Tevatron, pertencente ao Fermilab, é o segundo maior acelerador de partículas do mundo, com 6,3 quilômetros de circunferência: mesmo perto do fim de sua vida útil, pode ter feito uma das maiores descobertas da física (Fermilab)
Físicos nos Estados Unidos reportaram nesta segunda-feira a descoberta de fortes indícios da existência do bóson de Higgs, conhecido como a "Partícula de Deus". Na teoria, o bóson de Higgs confere massa às demais partículas e explica o surgimento da matéria. É a última peça que falta no modelo padrão da física.
Saiba mais
FERMILAB
O Fermi National Accelerator Laboratory é um laboratório localizado nos arredores de Chicago, no Estados Unidos, especializado em física de partículas de alta energia. O Fermilab foi fundando em 1967, mas recebeu esse nome apenas em 1974, em homenagem ao físico italiano Enrico Fermi, um dos pioneiros no estudo da fissão nuclear. O acelerador de partículas Tevatron pertence ao laboratório.
O Fermi National Accelerator Laboratory é um laboratório localizado nos arredores de Chicago, no Estados Unidos, especializado em física de partículas de alta energia. O Fermilab foi fundando em 1967, mas recebeu esse nome apenas em 1974, em homenagem ao físico italiano Enrico Fermi, um dos pioneiros no estudo da fissão nuclear. O acelerador de partículas Tevatron pertence ao laboratório.
TEVATRON
O Tevatron é o segundo maior acelerador de partículas do mundo, com 6,3 quilômetros de circunferência – perde apenas para o LHC, que possui 27 quilômetros. Foi desenvolvido pelo laboratório Fermilab em 1983, ao custo de US$ 120 milhões. Em 30 de setembro de 2011, encerrou suas atividades, mas os dados produzidos continuarão a ser analisados por muitos anos.
O Tevatron é o segundo maior acelerador de partículas do mundo, com 6,3 quilômetros de circunferência – perde apenas para o LHC, que possui 27 quilômetros. Foi desenvolvido pelo laboratório Fermilab em 1983, ao custo de US$ 120 milhões. Em 30 de setembro de 2011, encerrou suas atividades, mas os dados produzidos continuarão a ser analisados por muitos anos.
LHC
O Grande Colisor de Hádrons (do inglês Large Hadron Collider, LHC) é o maior acelerador de partículas do mundo, com 27 quilômetros de circunferência. Ele pertence ao CERN, o centro europeu de pesquisas nucleares e está instalado na fronteira franco-suíça. Em seu interior, partículas são aceleradas até 99,9% da velocidade da luz. Os experimentos ajudam a responder questões sobre a criação do universo, a natureza da matéria e fenômenos exóticos observados no espaço.
O Grande Colisor de Hádrons (do inglês Large Hadron Collider, LHC) é o maior acelerador de partículas do mundo, com 27 quilômetros de circunferência. Ele pertence ao CERN, o centro europeu de pesquisas nucleares e está instalado na fronteira franco-suíça. Em seu interior, partículas são aceleradas até 99,9% da velocidade da luz. Os experimentos ajudam a responder questões sobre a criação do universo, a natureza da matéria e fenômenos exóticos observados no espaço.
ELÉTRON-VOLT (eV)
O elétron-volt (eV) é uma unidade de medida que representa a quantidade de energia que um elétron ganha ao ser acelerado com a ajuda de 1 volt, no vácuo. A massa das partículas pode ser expressa em termos de elétron-volt. A relação se dá pela equação de Albert Einstein em que a energia é igual à massa vezes a velocidade da luz ao quadrado. O GeV é a medida padrão para a massa das partículas subatômicas. Um GeV é equivalente a massa aproximada de um próton.
O elétron-volt (eV) é uma unidade de medida que representa a quantidade de energia que um elétron ganha ao ser acelerado com a ajuda de 1 volt, no vácuo. A massa das partículas pode ser expressa em termos de elétron-volt. A relação se dá pela equação de Albert Einstein em que a energia é igual à massa vezes a velocidade da luz ao quadrado. O GeV é a medida padrão para a massa das partículas subatômicas. Um GeV é equivalente a massa aproximada de um próton.
BÓSON DE HIGGS
O bóson de Higgs é uma partícula subatômica prevista há quase 50 anos. Após décadas de procura, os físicos ainda não conseguiram nenhuma prova de que ela exista. O Higgs é importante porque a existência dele provaria que existe um campo invisível que permeia o universo. Sem o campo, ou algo parecido, nada do que conhecemos existiria. Os cientistas não esperam detectar o campo -- em vez disso, eles esperam encontrar uma pequena deformação nele, chamada bóson de Higgs.
O bóson de Higgs é uma partícula subatômica prevista há quase 50 anos. Após décadas de procura, os físicos ainda não conseguiram nenhuma prova de que ela exista. O Higgs é importante porque a existência dele provaria que existe um campo invisível que permeia o universo. Sem o campo, ou algo parecido, nada do que conhecemos existiria. Os cientistas não esperam detectar o campo -- em vez disso, eles esperam encontrar uma pequena deformação nele, chamada bóson de Higgs.
"Nossas informações apontam fortemente para a existência do bóson de Higgs, mas ainda precisamos dos resultados dos experimentos do Grande Colisor de Hádrons (LHC, maior acelerador de partículas do mundo, do Centro Europeu de Pesquisa Nuclear ) para confirmar a descoberta", declarou Rob Roser, porta-voz do laboratório nacional americano Fermilab (Fermi National Accelerator Laboratory), no estado de Illinois. Os resultados do LHC serão anunciados nesta quarta-feira.
As conclusões do Fermilab vêm de 10 anos de pesquisas com o Tevatron, um potente acelerador de partículas que iniciou suas atividades em 1985 e foi fechado no ano passado. "Desenvolvemos sofisticados programas de simulação e análise para identificar padrões similares ao bóson de Higgs. Ainda assim, é mais fácil buscar o rosto de um amigo em um estádio esportivo com 100.000 pessoas do que buscar uma eventual partícula de Higgs entre as bilhões de colisões", afirma Luciano Ristori, físico do Fermilab e do Instituto Nacional de Física Nuclear (INFN) italiano.
Os resultados do Tevatron indicam que a partícula de Higgs, se é que existe, tem uma massa entre 115 e 135 gigaeletronvolts, em torno de 130 vezes a massa do próton. Baseado em dois experimentos, a equipe de especialistas descobriu que há apenas uma chance em 550 de que o sinal encontrado seja meramente um acaso estatístico.
"Demos um passo crucial na busca pelo bóson de Higgs", declarou Dmitri Denisov, físico do Fermilab. "Ninguém esperava que o Tevatron conseguisse isso quando foi construído, na década de 1980".
As experiências com o acelerador de partículas mais potente, o LHC, na fronteira entre a França e a Suíça, apresentaram em dezembro de 2011 "provocadores indícios" de que a partícula estava escondida em uma estreita faixa de massa. O LHC mostrou uma possível faixa do bóson de Higgs entre 115 e 127 gigaeletronvolts.
Os experimentos realizados nos Estados Unidos se aproveitaram desses resultados, ainda que analisando uma faixa um pouco maior. Agora, a comunidade científica espera com impaciência os resultados europeus desta semana.
"É um verdadeiro suspense", afirmou Gregorio Bernardi, físico do Laboratório de Física Nuclear e de Alta Energia da Universidade de Paris VI e VII. "Estamos muito empolgados com isso".
(Com Agência France-Presse)